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Heat- and fluid-flow phenomena in weld pools 
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A mathematical formulation is presented for the transient development of the 
fluid-flow field and the temperature field in a liquid pool, generated by a spatially 
variable heat flux falling on an initially solid metal block. This physical situation is 
an idealized representation of a TIC: (tungsten-inert-gas) welding process. I n  the 
formulation allowance is made for electromagnetic, buoyancy and surface forces and 
the resultant equations are solved numerically. 

It is found that both the convective flow field and the temperature field are 
markedly affected by the nature of the heat flux and the flux of electric current falling 
on the free surface. 

In  the absence of surface-tension effects a broadly distributed heat flux and 
corresponding current distribution cause a situation where both electromagnetic and 
buoyancy forces are important in determining the fluid-flow field ; however, in these 
systems the fluid-flow field does not play a significant role in defining the heat-transfer 
process. I n  contrast, a sharply focused heat flux and current density on the free 
surface give rise to strong electromagnetically driven flows, which play an important 
role in determining the shape of the weld pool. 

Calculations are also done exploring the effect of surface-tension-driven flows. It 
is found that surface-tension gradients may produce quite high surface velocities and 
can have a profound effect on determining the weld-pool shape. 

1. Introduction 
In  recent years there has been a growing recognition of the fact that  fluid motion 

in weld pools may play an important role in affecting both the heat-transfer 
phenomena and ultimately the mechanical properties of the welds produced. I n  the 
metallurgical literature useful work has been published on fluid-flow and heat-transfer 
problems in electroslag welding systems and in the related area of electroslag refining 
(Dilawari, Szekely & Eagar 1978; Choudhary & Szekely 1980) ; however, fluid-flow 
problems in arc (TIG, tungsten-inert-gas) welding systems have received rather less 
attention up to the present. 

Figure 1 (a)  shows a sketch of a typical TIG welding system, where i t  is seen that 
an arc is being struck between an inert electrode and a molten weld pool. The thermal 
energy generated in the arc causes the base metal to melt. The solidification of the 
molten metal in the weld pool forms the bond between the two pieces that are joined 
by the process.? A somewhat idealized representation of the system is sketched in 
figure 1 (b), depicting transient heat flow and fluid flow in a metal pool, formed on 
an initially solid metal block, by the action of an impinging plasma jet. 

On inspection of figure l ( b )  it  is seen that this problem has the following key 
physical components. 

t A good description of the TIG system is available in the monograph of Lancaster (1980). 
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FIQURE 1. (a )  Sketch of the TIG welding system. ( 6 )  Idealized 

representation of the welding process. 

( 1 )  The plasma jet impinging onto the surface of the metal pool acts both as a 
distributed heat flux falling on the surface and as the source of a spatially non-uniform 
current that  passes through the pool. 

(2) The passage of the current through the pool gives rise to an electromagnetic 
force field, owing to its interaction with the magnetic field thus generated; this force 
field produces a recirculating motion in the pool. 

(3) The temperature differences in the pool give rise to a buoyancy field, which also 
generates motion (more precisely the motion results from the combined action of these 
two body force fields). 
(4) Surface-tension gradients at the free surface and the shear stress exerted by the 

impinging plasma jet may constitute additional driving forces for the flow, and in 
extreme cases may also cause the deformation of the free surface. 

( 5 )  The convective and conductive heat-transfer processes in the pool cause the 
melting of the block, through the lateral advancement of the melt-solid interface. 

Ideally a comprehensive model of a welding process will have to take into account 
all these factors. The work to  be described in this paper was undertaken to provide 
an improved basic understanding of the heat- and the fluid-flow phenomena in this 
system, with the ultimate objective of using the results obtained for the solution of 
problems in welding technology. 
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FIGURE 2. Sketch of the system used in the computations. 

In the development of the formulation the effects (1)-(4) were considered, although 
the study of surface deformation and the shear exerted by the impinging plasma jet 
has been deferred a t  this stage. As will be seen, this formulation does appear to 
represent a significant advance over what has been available up to the present. 

Previous work 

While the precise problem defined above has not yet been tackled, a great deal of 
useful work has been reported in the literature on various components of this rather 
complex problem. 

Transient melting or solidification in the presence of liquid-phase convection has 
been studied by a number of investigators. In  this regard, particularly noteworthy 
is the elegant numerical work of Sparrow, Pantankar & Ramadhyani (1977), who 
considered the progressive enlargement of a cavity due to natural convection. 

Perhaps the closest approach to the specific weld-pool problem has been that of 
Atthey (1980), who examined the steady-state laminar electromagnetically driven 
flow in a cavity of predetermined dimensions, and for a predetermined electromagnetic 
force field - for an isothermal system. 

The problem to be tackled as part of the work to be reported here differs from these 
earlier investigations, because in the formulation allowance will be made for: (if the 
combined effects of the electromagnetic buoyancy and surface-tension forces ; (ii) the 
unsteady-state nature of the problem. 

2. Fognulation 
Figure 2 shows a schematic sketch of the system, which is seen to consist of a solid 

plate containing a liquid pool. As indicated in the sketch, a spatially distributed heat 
flux and current fall on the free surface corresponding to the z = 0 plane. As a result, 
circulation is induced in the pool, and the associated heat transfer will cause the 
boundaries of the pool to expand. 

The quantitative representation of this system will have the following components : 
( 1 )  the electromagnetic force field has to be evaluated; 
(2) the temperature distribution has to be calculated, together with the time- 

(3) the fluid-flow field has to be obtained. 
This is an inherently transient problem and these three sets of equations are 

coupled, because fluid flow affects convective heat transfer, while the fluid flow itself 
is driven by the combined action of the electromagnetic, buoyancy and surface 
tension forces. 

dependent position of the meltrsolid boundary ; 
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It follows that the problem has to be stated by expressing Maxwell's equations, 
the Navier-Stokes equations and the differential thermal-energy balance equation ; 
in the latter due allowance has to be made for convection in the pool and the 
absorption of the latent heat of melting. 

Heat transfer 

As sketched in figure 2, three distinct domains have to be considered in representing 
the heat-transfer process : 

(i) the molten phase, where both conduction and convection are of importance; 
(ii) the two-phase or mushy regions, where the latent heat of melting is absorbed; 
(iii) the solid region, where heat is transmitted by conduction only. 
I n  the statement of the governing equations in a dimensionless form it is desirable 

to work in terms of normalized quantities, which in turn requires that the proper 
scales be defined for the key dependent and independent variables. 

Let us define the characteristic timescale as 

L2Cp, 0 P -. 1 
k,  St' 

where 

which follows from the heat balance a t  the moving boundary, Here L = thickness 
of the plate (see figure 2), Cp,o  E specific heat of the material, k,  = thermal 
conductivity of the solid, p = density, TI = liquidus temperature, To = initial temp- 
erature and h = heat of fusion. The timescale chosen corresponds to the melting time, 
which includes the Stefan number St. When the Stefan number is of the order of unity, 
this melting time will be similar to  the timescale for thermal diffusion. I n  the present 
case St is of the order of 3 4  so that these two timescales would be of similar 
magnitude. 

I n  defining the lengthscale different values have to be chosen for heat transfer and 
fluid flow since fluid will be confined to the weld pool. For fluid flow the characteristic 
lengthscales are L,  and L,, corresponding to the pool radius and the pool depth 
respectively. 

On designating the aspect ratio as A = Lz/LR and using the equation of continuity, 
the characteristic velocities are related by 

Using these scaling factors, the dimensionless vorticity r may be written as 

When A is small, as is the case for most welding situations, the second term in this 
expression will be small. 

The appropriate scales for the stream function y? are related by 
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Then the dimensionless form of the vorticity-transport equation may be written as 

where the Reynolds number, Re = PuR, 0 LR 
P 

(4, OP 
4 ' 

the Prandtl number, Pr = 

9 PLk ATP2 
P2 

the Grashof number, Gr = 9 

the dimensionless thermal conductivity k = thermal conductivity/k,, AT is the 
maximum temperature difference in the weld pool, p is the viscosity, 

the dimensionless temperature, 
T-To 
T,-T,' 

0 = ___ 

r and z are the dimensionless radial and axial coordinates, and curlF, is the 
dimensionless curl of electromagnetic force, to be defined subsequently ; subscripts 
1 and s refer to the liquid and solid phases respectively. 

The stream function $, which appears in the thermal-energy balance equation, may 
be related to the vorticity by 

The differential thermal-energy balance equation takes the following form : 

where C,  = dimensionless specific heat, i.e. specific heat/Cp, Equation (3) will be 
valid for all three regions, with the stream function being zero in the mushy region 
and in the solid phase. 

In  order t o  allow for the release of the latent heat in the mushy region, the following 
dimensionless expression was used to represent the specific heat : 

1 
St ABls ' 

cp = ~ (4) 

where AO,, = 8,-0, is the temperature range of melting, and 0, is the solidus 
temperature of the metal. It should be noted, furthermore, that  the thermal 
c-snductivity in the mushy zone was assumed to vary linearly between the values for 
the molten and the solid regions. 

The technique of using an effective specific heat to  represent the absorption of a 
latent heat of phase change is frequently employed in melting or solidification 
problems (Szekely 1979). 

The last two terms on the left-hand side of ( 1 )  represent the buoyancy and the 
electromagnetic forces respectively. 
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The boundary conditions for ( 1 )  and (2) take the following form 

t = O  at z = O ,  

@ = 0 along all boundaries, 

which in physical terms specify that the gradient of the vorticity/r has to be zero 
at the free surface and at the axis of symmetry. The expression used for specifying 
the vorticity a t  the melt-solid interface, i.e. a t  the moving boundary, will be given 
subsequently. 

The boundary conditions associated with (3) take the following form : 

ae 
- = 0  aZ at z = 1 ,  

- 0  at r = O ,  
ae 
ar 
-- 

8 = 0  a t  r = - , t  R 
L 

where Q(r)  = q(r ) /qo is the dimensionless heat flux from the arc falling on the free 
surface of the metal, and qo is the heat flux a t  the axis of symmetry. 

When there is a surface-tension gradient a t  the free surface, caused by the 
temperature dependence of the interfacial tension, the boundary condition for 
vorticity has to take the following form : 

where 

a t  z = 0, 
M 1 ae t=--- 
Re r ar 

is the surface-tension parameter and y is the interfacial tension. The quantity M may 
also be regarded as a surface-tension Reynolds number (Ostrach 1979). 

Calculation of the electromagnetic force Jield 
In order to calculate Fe, which appeared as one of the driving forces in (l) ,  let us define 
an electromagnetic stream function I++, as 

j = curl (? e,> , 

where j is the electric current density. Then for small values of the magnetic Reynolds 
number Re, 4 1 one may obtain the following relationship: 

t An additional constraint was also introduced that the temperature of the free surface may not 
exceed the upper value corresponding to the temperature when heat loss by vaporization equals 
the incident heat flux. As a practical matter this value is at  least 500 K below the boiling point. 



Heat- and jluid-$ow phenomena in weld pools 59 

Here Re, = ,ue gUR, ,  L,, ,ue is the magnetic permeability and c is the electric 
conductivity. 

When Ha2/Re < 1, curl F, may be expressed as 

Re L3 L A 
Re2 L3 

r2 curl ( j  x B).  

Here B is the dimensionless magnetic induction, j is a dimensionless electric current 
density. 

Ha = B, L R ( r / p ) ?  is the Hartmann number, B, = ,uejo L is the characteristic mag- 
netic induction, j ,  is the scale of the electric current density, and Rej = pej;  L4p/p2.  

The boundary conditions for the electromagnetic field equations take the following 
form : 

$,(r) = j:j,rdr a t  z = 0, $, = 0 a t  z = L,  (9) 

$, = 0 a t  r = 0, $, = $ e ~ , ~ , ( l - z )  a t  r = R, (10) 

since aj j , /az = 0. Here j ,  = j ,  exp ( - aj r ) ,  the arc-current density falling on the free 
surface. Equations (1)-(10) then represent the complete statement of the problem. 

In  order to evaluate the electromagnetic term in the vorticity- transport equation 
the distribution of the electromagnetic stream function is needed. Close to the free 
surface the computed results show that 

where C x 8 for the normal mode distribution, and C x 10 for the cathode spot mode 
of operation. Now a$,/az x - t+he I,-, CIL.  The characteristic value of $, isj, L2,, where 
L, = l /a j .  Furthermore, j ,  - Ia;/n, where 1 is the total arc current. Close to the 
surface of the plate the dependence of $, on the radius can be evaluated from the 
distribution of the electric current along the surface : 

Ia r2 1 
$,,,=, = [j,rdr x f for r < -. 

2n aj 

then 

The electromagnetic term in the vorticity transport equation may now be written 
as 

Rj, CLg L,a; 4, a$, 
__ L R  L, curl ( j  x B) = __ vz,, Re2 nzL r az ’ 

-- r2 

where Rj, = ,u, 12p/,u2. 

3. The technique of solution 
Equations (1) and (3) are two-dimensional unsteady-state differential equations, 

while the expressions defining the stream function and the electromagnetic stream 
function are steady-state relationships. While the actual form of the governing 
equations (1)-(3) was suitable for scaling and order-of-magnitude interpretation, the 
form of (1)-(3) handled in the numerical integration was slightly different. 

3 F L M  147 
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The lengthscale used in the integration of both the vorticity-transport equation 
and the thermal-energy balance equations was the thickness of the plate, while the 
reference velocity defined for computational purposes was 

U = - - ( G  - Y)t; 
P L  

where the reference value I!% of the Grashof number was evaluated using the plate 
thickness L as the characteristic length. This procedure was convenient for generating 
numerical results, because a time-dependent lengthscale would have introduced 
unnecessary complications. I n  order to obtain a solution, the governing equations 
were put in a finite-difference form, using a 18 x 20 grid. It should be noted that a 
rectangular grid pattern was employed using a variable grid spacing having a larger 
number of grid points in the vicinity of the melt-solid boundary. The grid structure 
was redefined at each time step. 

This procedure differed somewhat from that adopted by Sparrow et al. (1977), who 
used a coordinate transformation in order to  solve a melting problem in a cavity. This 
alternative procedure required the elimination of certain higher-order terms from the 
differential equation, which was not necessary in the present case. 

The unsteady-state equations for the temperature distribution and vorticity were 
solved through the use of the 'hopscotch method ', detailed descriptions of which are 
readily available in the computational literature (Gourlay 1970 ; Gourlay & McGuire 
1971). 

A technique proposed by Spalding and coworkers (Gosman et al. 1969) was used 
for solving the equations for the stream function and the magnetic stream function. 
I n  order to  avoid the computational complexities posed by the need to evaluate the 
vorticity at the melt-solid boundary, the following procedure was adopted for each 
time step. 

(1) By using values of the stream function near the boundary and utilizing the 
relationship r t  = Vz@, the values were evaluated at the points adjacent to  the 
phase boundary, 

(2) These f& were assigned as boundary values, and, with the vorticity equation 
solved, the in the remainder of the liquid domain were evaluated. 

(3) The values of the stream function @i, j  inside the main region were found from 
the differential equation for the stream function, with the assumption that I,+(,~ are 
given a t  the boundary. 
(4) The values of the stream function near the boundary then had to be corrected 

for the known condition of $ at the boundary. This was done by using the relationship 
a @ p r  = a @ / &  = 0 at the phase boundary. 

4. Results 
The calculations were carried out for a fixed set of property values, listed in table 

1. Three basic sets of conditions were examined, namely a normal mode type of 
operation and a cathode spot type of operation, as defined in table 2 ,  and the effect 
of surface tension. The input parameters, except for surface tension, were taken from 
Nestor (1962). The current distribution and the heat-flux distribution were expressed 
respectively as 

j zb " )  = j, exp ( -aj r ) ,  

d r )  = Po exp ( -aq r 2 ) .  
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C, = specific heat of molten and solid metal = 753 J kg-' K-' 
K ,  = thermal conductivity of molten metal = 15.48 W mK-' 
K,  = thermal conductivity of solid metal = 31.39 W mK-' 
L = thickness of metal plate = 3.1 x lo-' m 
R = maximum radius of region of calculation = 4.65 x 
T = temperature (K) 
To 5 initial temperature of metal = 300 K 

T5 E solidus temperature of metal = 1523 K 
0 = (T- T,)/(T, - To) = dimensionless temperature 
p = coefficient of thermal expansion = 

h E latent heat of fusion = 247 kJ kg-' 
,u = viscosity of molten metal = 0.006 kg s-l 

p, = magnetic permeability of free space = 1.26 x 
p = density of molten and solid metal = 7.2 x lo3 kg m-3 
CT = electrical conductivity, 7.14 x lo5 R-' m-I 

m 

5 liyuidus temperature of metal = 1723 K 

K-' 

H m-' 

TABLE 1 .  Physical-property values used in the computation 

Parameter Normal mode Cathode spot mode 

40 

U P  

j0 
aj 1.3 x lo2 m-' 2.3 x 10' m-' 

2.2 x lo' W m-z 
3.18 x 10* m-2 
1.9 x lo6 A m-2 

6.335 x lo7 W m-2 
1 x lo5 m-2 
5.11 x lo6 A m-2 

TABLE 2. The parameters used to characterize the heat-flux and 
electric-current distribution on the surface 

The 'normal mode' gave a relatively diffuse current and heat-flow distribution, while 
the 'cathode spot' type of operation represented a more sharply focused input of 
current and thermal energy. As will be shown subsequently, these two different modes 
of operation will tend to produce markedly different behaviour. 

The third group of results presented provides a preliminary examination of the role 
played by surface-tension-driven flows. Before proceeding with the actual presentation 
of the computed results, we note that, wherever possible, advantage will be taken 
of the insights that may be developed from the examination of the dimensionless form 
of the governing equations. 

4.1. The normal mode of operation 

In  examining this system, ideally one would wish to obtain insight regarding the 
following questions : 

(i) whether the flow is driven primarily by buoyancy or electromagnetic forces; 
(ii) whether the heat- and fluid-flow phenomena are 'in phase'; 
(iii) whether convection plays an important role in affecting the heat-transfer 

process. 
Let us define the ratio of the clectromagnctic force to buoyancy : 
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R mag also be written as 
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For LR = 5 x m, which is a typical weld-pool radius in many applications, 
R NN 0.3. In the early stages of the process, when LR is small, buoyancy is more 
important than electromagnetic forces. It is also seen that R depends very strongly 
on the distribution of the electric current a; over the surface and on the thickness 
L of the plate. 

Since the buoyancy term is proportional to aO/ar, and the steepest temperature 
gradients will be a t  the outer edge of the weld pool at the melt-solid interface, one 
would expect buoyancy-driven flow to dominate there throughout. When R < 1 and 
ReA2 << 1 ,  R - GrA3; hence 

In  contrast, when Re A 2  > 1, Re - (&A);; hence UR,o  - (gL,PAT):. It is thus seen 
that the relationship between UR, and the other process parameters is extremely 
sensitive to the scale used. Therefore, as will be discussed in the presentation of the 
computed results, the main utility of the order-of-magnitude approach will be 
interpretive, rather than predictive in this instance. 

Upon considering the vorticity-transport equation (1)  it  is readily seen that the 
coefficient of the transient term 

St L; 
- -Q 1 .  

Re A2 Pr L2 

It follows that the transient term may be neglected and that the velocity field will 
be in phase with the temperature field. Stated in other words, while the velocity field 
will obviously be time-dependent, this will be caused by changes in the temperature 
field and the system geometry. This is an interesting behaviour for a low-Prandtl- 
number system, which will be discussed subsequently. 

Upon considering the thermal-energy balance equation (3) i t  is seen that the 
convective transport terms are multiplied by the factor 

H e 2  Pr k ,  (17) 

which a t  least in the initial stages, when L, is small, may be much less than unity. 
Under these conditions convection does not play an important role in heat transfer, 
which is dominated by transient conduction. 

Turning to the computed results, figures 3 (a)-(c) show the progressive development 
of the temperature profiles calculated by considering conductive heat transfer only. 
The development of the molten-metal pool is readily seen by following the 19 = 1 
isotherm, which defines the melt line. 

Figures 4(a)-(c) show the computed temperature profiles for the case where 
allowance has been made for convection and both electromagnetic and buoyancy 
forces are taken into consideration. This plot is similar to that shown earlier in figure 
3, but there are some slight differences, which will be discussed subsequently. 

Figures 5(a)-(c)  show plots of the computed velocity fields corresponding to the 
temperatures shown in figure 4 for various values of time. Initially the flow appears 
to be dominated by buoyancy forces, but subsequently two circulating loops are 
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0 1 2 3 4 

z (mm) 
FIGURE 6. Shape of the weld pool corresponding to the normal mode of operation after 8 s of welding. 
The dotted line corresponds to the pure conduction, the dashed line corresponds to the buoyancy- 
driven flow, and the solid line corresponds to combined buoyancy and electromagnetically driven 
flow. 

discernible, indicating that buoyancy forces play an important role a t  a distance from 
the axis of symmetry, while the rather weaker counterclockwise circulation pattern 
in the centre of the weld pool is attributable to electromagnetic forces, which appear 
to gain strength with the growth of the weld pool. These findings are consistent with 
the order-of-magnitude analysis presented earlier in this section. 

These double circulating loops have been predicted and also observed in electroslag 
refining (Choudhary & Szekely 1980, 1981a,b). 

It should be noted that while in principle double-loop circulation systems could 
be produced by buoyancy forces alone, in the present study computed results, which 
are not reproduced here, have clearly shown that buoyancy f6rces resulted in a 
single-loop circulation system, while the combined effect of electromagnetic and 
buoyancy forces could, under certain circumstances, result in a double-loop 
circulation. 

A t  this stage it is instructive to compare the predictions made for the shape of the 
weld pool, based on 

(a )  conduction only, 
( 6 )  natural convection, and 
( c )  on the combined action of electromagnetically and buoyancy-driven flows. 

This is done in figure 6, and i t  is seen that the profiles predicted on the basis of these 
three mechanisms are essentially the same. This behaviour is fully consistent with 
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the previously presented discussion in which the order-of-magnitude analysis has 
shown, that, for the input parameters chosen, convective heat transfer does not play 
an important role. 

Calculations were also carried out by neglecting the transient term in the 
vorticity-transport equations ; that is, by making the quasi-steady-state approxima- 
tion. For the normal mode of operation the results thus obtained were indistinguishable 
from those developed by the solution of the full transient equations. This finding again 
is consistent with the order-of-magnitude analysis, presented above, showing that the 
time derivative of the vorticity was significantly smaller than the other terms in the 
vorticity-transport equation. 

It has been remarked previously that the proper scale for the velocity will depend 
on the quantity Re A2.  The consideration of the computed velocity fields, as given 
in figure 5 ,  enables one to test this contention. 

Examination of the velocity fields has shown that 

SP A T 4  P 
PLR 'R,O - 

suggested by (15), notwithstanding that the criterion Re A2 4 1 was not satisfied. This 
may be explained by the fact that  the flow field was dominated by buoyancy forces, 
which in turn were confined to a relatively small region at the outer edge of the pool. 
It follows that the correct linear scale for the Reynolds number would have to be 
smaller than the pool radius. 

4.2. The cathode spot mode of operation 
Under these conditions, defined in table 2 ,  both the heat flux and the current are 
sharply focused. 

Figures 7(a)-(c)  show the computed temperature profiles in the absence of 
convection. 

Figures 8 (a)-(c) show the computed temperature profiles for the case where both 
buoyancy and electromagnetically driven flows have been taken into account, while 
the corresponding velocity profiles are seen in figures 9 (a)-(c). 

Inspection of figure 9 shows that in this case the circulation is countercockwise; 
thus the fluid field is dominated by electromagnetic forces. This behaviour is 
reasonable on physical grounds, because the strongly divergent current field will 
generate much stronger electromagnetic forces. Using the parameters defined in the 
order-of-magnitude analysis, the quantity R defined in (14) was about 3, indicating 
dominance by electromagnetic forces. In  the cathode spot mode of operation, after 
a certain time a deep pool may develop, with relatively high velocities; then Re A2 > 1 
and R > 1 .  Under these conditions the convective and the electromagnetic terms will 
dominate, and thus we may write 

A comparison of figures 7 and 8 shows that the predicted pool profiles are rather 
different. This difference is seen more explicitly in figure 10, which shows the pool 
profiles, as predicted on the basis of pure conduction, buoyancy-driven convection 
and for the case where both the electromagnetic and the buoyancy forces have been 
taken into consideration. It is readily seen that by neglecting the electromagnetically 
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FIGURE 10. Shape of the weld pool corresponding to the cathode spot mode of operation after 8 s 
of welding. The dotted line corresponds to pure conduction, the dashed line corresponds to the 
buoyancy-driven flow, and the solid line corresponds to combined buoyancy and electromagnetically 
driven flow. 

driven component one could have seriously underestimated the pool depth in the 
system. 

Invoking the order-of-magnitude analysis for the cathode spot mode of operation, 
i t  is readily seen that the parameter Re (LJL)  Pr k appearing in (3) is now of order 
unity, indicating that convection does play a significant role, which is precisely the 
case? 

Using arguments that were developed in $4.1, it may be shown that the quasi- 
steady-state approximation will hold approximately regarding the vorticity transport 
equation. 

Finally i t  may also be demonstrated, by recourse to  (18), that, since Re A2 > 1, 
UR, ,/LR L i  N constant throughout the entire run. Indeed, analysis of figure 9 shows 
that this relationship is valid to  within 10 yo throughout the duration of the run. 

4.3. Surface-tension effects 
The previously given computed results were obtained on the assumption of zero shear 
a t  the free surface. This condition will be met under certain circumstances, while 
surface-tension gradients could give rise to non-zero shear under yet another set of 
circumstances. At present there is insufficient knowledge to enable the accurate 
assessment of surface-tension gradients, so for this reason only an illustration will 
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be given of the possible role that surface tension may play in these systems. If the 
surface tension dominates the flow the characteristic velocity should be evaluated 
from ( 5 ) ,  representing the tangential stress balance a t  the free surface (Ostrach 1979). 
When ReA2 $ 1 ,  i.e. for viscous flow, this gives 

In  contrast, when Re A 2  $- 1 a boundary-layer flow will occur and the viscous and 
inertia terms must be of the same order. The boundary-layer thickness S is the 
appropriate scale for this latter case, and hence S/L, = l / (Re) :  or 6 / L ,  = l /A(Re); .  
Thus 

When 6 4 L, the aspect ratio L,/LR = A $- l / (Re)$.  In  evaluating Re (19) or (20) have 
to be used. 

The relative importance of buoyancy and surface tension is usually expressed 
through the Bond number, defined by the coefficient of the buoyancy term in (3).  
For the viscous case we have 

Gr A3 
BO = ~ 

Re ' 

The analogous parameter for electromagnetic forces may be written as 

Rjm CA2+ L& 
Ren2L ' 

Boj = 

It may be readily shown that for the parameters chosen in this study 

Bo @ 1, Boj 4 1 .  

The quantities Bo and Boj may be regarded as modified Bond numbers. Thus we may 
expect that the flow field would be dominated by surface-tension effects and that these 
factors would also play a major role in affecting the heat-transfer process. 

The computed results to be given in the following have to be regarded as 
preliminary, because the very steep gradients that  existed near the free surface could 
have introduced some computational inaccuracy. 

Figures 11 and 12 show the evolution of the temperature and the velocity profiles 
for operation with a normal mode (as described) in table 2 and with ay/aT = -0.01, 
where T is the dimensional temperature. 

Inspection of these figures shows quite high outward velocities at the free surface, 
and the essential absence of significant electromagnetically driven flow. A comparison 
of the weld-pool and temperature profiles with those given previously in figures 3-10, 
for identical conditions, but in the absence of surface-tension-driven flows, indicates 
that for this case the net effect of surface-tension-driven flow was to produce a wider, 
but shallower, weld pool. This finding is consistent with physical reasoning, since the 
radial flow a t  the free surface should broaden the weld-pool dimension, while the 
relatively stagnant central portion of the pool would lead to a reduced penetration. 

Figures 13 and 14 show the time evolution of the temperature and velocity fields, 
for the normal mode of operation, but now with ay/aT = 0.01. 

It should be remarked that a positive temperature coefficient for the interfacial 
tension would not be feasible on physical grounds for pure materials; however, such 
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behaviour may be found in practice owing to the accumulation of surfactants a t  the 
free surface. Inspection of figures 13 and 14 shows a strong counterclockwise 
circulation pattern, with very high velocities, which is dominated by the combined 
effect of the surface tension and the electromagnetically driven flow components. The 
weld-pool shape, involving deep penetration, is consistent with the circulation 
pattern, which brings the hottest material from the central portion of the free surface, 
‘straight down’ to the bottom of the pool. 

It is readily seen from inspection of figures 11-14 that  surface-tension-driven flows 
may have quite a marked effect on both the circulation pattern and on the weld-pool 
shape, and that these effects deserve further attention. 

5. Discussion 
A mathematical formulation has been developed Lo represent the transient 

behaviour of the fluid-flow field and the temperature field in a liquid pool, which is 
generated by a spatially variable heat flux and current falling on an initially solid 
metal block. This physical situation provides a somewhat idealized representation 
of heat transfer and fluid flow in weld pools. 

The formulation was thought to be quite comprehensive because allowance was 
made for both electromagnetically and buoyancy-driven flows and for the transient 
nature of the process. Furthermore, the effect of surface tension has also been 
explored. Previous related studies were concerned with rather more isolated aspects 
of this problem. 

An efficient numerical technique has been developed which enabled the generation 
of time-dependent solutions for the temperature and the fluid flow fields. 

The bulk of the results were obtained for conditions where surface-tension effects 
were not taken into consideration. It is thought that there may be conditions when 
this is an appropriate assumption (Heiple & Roper 1982) owing to the accumulation 
of surfactants or other chemical effects. On commenting on these, an interesting 
aspect of the results was that the transient nature of the process provided marked 
changes in the flow patterns. For the particular conditions chosen, initially, for small 
pool depths the velocity field was dominated by buoyancy forces, giving a clockwise 
circulation pattern on the right-hand side of the pool. For longer times and larger 
pool sizes the electromagnetically driven component of the flow became significant 
and a double-loop circulation pattern was observed. Perhaps the most important 
finding of this research was that the actual spatial distribution of the current and 
of the heat flux produced by the arc play a very important role in determining heat 
flow, the pool profiles and the patterns of convection within the pool. 

One set of computed results, obtained for a normal model of operation, as cited 
by Nestor (1962), produced heat flow, which was not very much affected by 
convection. This behaviour was consistent with the order-of-magnitude analysis 
presented in the present paper. The circulation in the pool was dominated initially 
by buoyancy forces, while electromagnetic forces became important during the latter 
stages of the process. This behaviour is again consistent both with physical reasoning 
and the analysis presented. I n  a physical sense the system is bounded by largely 
isothermal surfaces, which restrict the domain of buoyancy-driven flows ; for longer 
times, upon increasing the physical scale, electromagnetic forces will become more 
significant. This is also reflected in the dependence of the quantity R on the pool 
radius. 

The other set of computed results corresponded to a mode of operation (termed 
cathode spot in practice) where the current and the heat flux were quite concentrated 
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near the axis of the pool. Under these conditions, the very strongly divergent current 
path gave rise to much stronger electromagnetically driven flows, which were 
dominant. In  this case, convection also played an  important role in affecting the 
overall heat-transfer characteristics of the system ; in particular, in modifying the pool 
profile. The greater pool depths may be attributable to a combination of factors, 
including the higher intensity of the heat input near the axis of symmetry and the 
anticlockwise circulation pattern, which brought hot fluid from the centre of the free 
surface, down the vertical axis of the pool, in addition to the actually larger fluid 
velocities encountered in this case. Under these conditions, to neglect the convection 
heat-flow effects would have introduced a serious error. This behaviour is again 
consistent with the analysis, which has shown the marked sensitivity of the parameter 
R on the current distribution; furthermore by scaling the convective terms in the 
thermal-energy balance equation, convection was found to  be significant for such 
systems in affecting the heat-transfer rate. 

A limited number of calculations was also carried out, examining the effect of 
surface-tension-driven flows. I n  a mathematical sense this means that the boundary 
condition specifying zero shear a t  the free surface was replaced by an expression which 
related the surface shear to the product of the temperature gradient and the 
derivative of the surface tension with respect to temperature. 

These calculations have shown that surface-tension-driven flows may have a 
profound effect on weld-pool behaviour. When ayli3T is negative the resultant radial 
outflow of hot material from the centre will produce in a wider but shallower weld 
pool. Extrapolating this behaviour, large negative values of ay/aT may cause 
extremely shallow weld pools and hence result in defects. 

Positive values of ay/aT may occur in the presence of impurities (Heiple & Roper 
1982). The calculations carried out for this condition have shown that the resultant 
counterclockwise circulation pattern will result in a deep penetration of the weld pool. 

It is thus seen that surface-tension effects may be quite significant in producing 
very high surface velocities and very marked variations in the weld-pool shape, 
obtained for relatively small changes in the operating conditions. These findings 
appear to be consistent both with the order-of-magnitude analysis and with experience 
reported in the welding literature. 

The numerical values of the velocities calculated were found to  depend quite 
markedly on the current and heat input distribution and on the pool size; because 
of these factors a direct comparison with results reported by other investigators is 
not quite straightforward. It is thought, nonetheless, that  the range of the velocities 
calculated for the larger pool sizes was comparable to those reported by Atthey (1980). 

6.  Concluding remarks 
A formulation has been developed to represent the electromagnetic force field, the 

velocity field and the temperature field in a metal slab onto which a plasma jet is 
impinging, thus providing a somewhat idealized model for the TIG welding process. 

The formulation is thought to be quite comprehensive, because allowance has been 
made for the transient nature of the system, with a moving boundary, and for the 
combined effect of electromagnetic, buoyancy and surface-tension forces. The 
principal findings of the work may be summarized as follows. 

( 1 )  The TIG welding operation is a very complex process, which is affected by a 
number of parameters, such as transient, conduction, buoyancy, electromagnetic and 
surface-tension forces. 
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(2) Under certain conditions, such as a broadly distributed heat source (R < 1 )  and 
in the absence of surface-tension forces ( M  = 0), convection plays a relatively minor 
role in heat transfer, and thus the system may be adequately modelled by considering 
conductive heat transfer only. 

(3) However, under other conditions, such as sharply focused heat and electric- 
current sources (R > 1 )  and when surface-tension effects are significant (Bo, Boj 4 l ) ,  
convection may play a very important, indeed dominant, role in determining the 
weld-pool shape. 
(4) The above-noted complexity of the system is likely to be responsible for the 

apparent lack of success in explaining widely varying weld-pool shapes obtained 
under seemingly similar operating conditions. Indeed the marked changes produced 
by surface-tension-driven flows, which may be altered by slight changes in process 
chemistry, could provide a partial explanation for these phenomena. 

(5)  Clearly further work would be desirable in exploring additional complexities 
of these systems, such as flow instabilities, and the two-way interaction between the 
weld pool and the impinging plasma, brought about by the selective volatilization 
of some of the weld-pool components. Such work is currently in progress. 

The authors wish to thank the US Department of Energy for support of this 
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